Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase

نویسندگان

  • Lauren E. Boucher
  • Jürgen Bosch
چکیده

The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pathway. Crystal structures of the homologous Plasmodium falciparum fructose-1,6-bisphosphate aldolase have been described previously. Here, T. gondii fructose-1,6-bisphosphate aldolase has been crystallized in space group P22121, with the biologically relevant tetramer in the asymmetric unit, and the structure has been determined via molecular replacement to a resolution of 2.0 Å. An analysis of the quality of the model and of the differences between the four chains in the asymmetric unit and a comparison between the T. gondii and P. falciparum aldolase structures is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion.

Gliding motility and host-cell invasion by apicomplexan parasites depend on cell-surface adhesins that are translocated via an actin-myosin motor beneath the membrane. The current model posits that fructose-1,6-bisphosphate aldolase (ALD) provides a critical link between the cytoplasmic tails of transmembrane adhesins and the actin-myosin motor. Here we tested this model using the Toxoplasma go...

متن کامل

Fructose 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa.

We have isolated a mutant of Pseudomonas aeruginosa deficient in fructose 1,6-bisphosphate aldolase activity. This mutant, similar to the mutants deficient in any of the Entner-Doudoroff pathway enzymes, does not allow appreciable alginate formation from glucose and gluconate, but allows alginate synthesis from mannitol and fructose. This suggests that glucose and gluconate must be converted to...

متن کامل

Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications.

Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystal...

متن کامل

Reversible microsomal binding of hepatic aldolase.

Fructose-1,6-bisphosphate aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13) partitions between the microsomes and the cytosol when a rat liver homogenate is fractionated by differential centrifugation. Gel electrophoresis and immunodiffusion indicate that the one isozyme present in the liver of the young adult rat is found in both fractions. The association ...

متن کامل

Fructose 1,6 Bisphosphate Aldolase from Gestational Diabetic Human Placenta: Purification, Identification, and Investigation of Kinetic Properties

Gestational diabetes mellitus is described as glucose intolerance at various degrees that is first detected during pregnancy. In diabetic complications, there are changes in placental function, particularly with respect to intake, transmit, and utilization of glucose, and also in glycolysis and glycolytic enzymes. The placenta possibly plays a critical role in protecting the fetus from adverse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2014